استفاده از روش‌های هوشمند فازی- عصبی و شبکه‌های عصبی چند لایه در تشخیص عیوب اصلی ماشین‌های دوار

نویسندگان

  • مجید نوری کمری دانشجوی کارشناسی ارشد، دانشکده مکانیک، دانشگاه تربیت دبیر شهید رجایی
چکیده مقاله:

امروزه عیب­یابی ماشین­های دوار از راه تشخیص علائم شروع و رشد عیب با استفاده از روش های هوشمند، شناسایی علت و قطعات آسیب دیده و پیشگویی میزان عمرکاری باقیماندة ماشین، نقش مهمی در جلوگیری از آسیب­دیدگی شدید ماشین و هزینه­های بالای تعمیرات بر عهده دارند. هدف این تحقیق نیز استفاده از ساختار هوشمند شبکه­های فازی- عصبی و  عصبی چند لایه در تشخیص عیوب اصلی ماشین­های دوار از جمله نابالانسی، ناهمراستایی، خرابی بیرینگ و لقی مکانیکی است. لذا در این تحقیق علاوه بر ایجاد روشی خودکار برای تشخیص عیب، در جهت افزایش دقت و سرعت این شبکه­ها نیز تلاش شده است. در این راستا، با استفاده از روش تحلیل اجزای اصلی ابعاد ماتریس ورودی در حد مطلوب کاهش داده شد و نیز کارایی دو شبکه هوشمند فازی- عصبی و عصبی چند لایه، در تشخیص عیوب با یکدیگر مقایسه شد. جهت دست­یابی به هدف فوق، شبکه­های گفته شده با استفاده از بردارهای ویژگی و مشخصات استخراج شده از طیف­های فرکانسی و موج­های زمانی، آموزش دیده شدند. نتایج نشان داد که برای 84 مورد اندازه­گیری نهایی، شبکه­های فازی- عصبی و عصبی چند لایه به ترتیب دارای میانگین 91 و 78 درصد موفقیت در تشخیص درست عیوب بودند.

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

استفاده از روش های هوشمند فازی- عصبی و شبکه های عصبی چند لایه در تشخیص عیوب اصلی ماشین های دوار

امروزه عیب­یابی ماشین­های دوار از راه تشخیص علائم شروع و رشد عیب با استفاده از روش های هوشمند، شناسایی علت و قطعات آسیب دیده و پیشگویی میزان عمرکاری باقیماندة ماشین، نقش مهمی در جلوگیری از آسیب­دیدگی شدید ماشین و هزینه­های بالای تعمیرات بر عهده دارند. هدف این تحقیق نیز استفاده از ساختار هوشمند شبکه­های فازی- عصبی و  عصبی چند لایه در تشخیص عیوب اصلی ماشین­های دوار از جمله نابالانسی، ناهمراستایی،...

متن کامل

تشخیص خودکار مدولاسیون با استفاده از برنامه نویسی ژنتیک و شبکه عصبی چند لایه پرسپترون

This paper shows how we can make advantage of using genetic programming in selection of suitable features for automatic modulation recognition. Automatic modulation recognition is one of the essential components of modern receivers. In this regard, selection of suitable features may significantly affect the performance of the process. In this research we implemented our model by using appropria...

متن کامل

تشخیص خرابی دریچه در اثر عیوب مختلف با استفاده از روش انتشار صدا و شبکه‌های عصبی

هدف از این مقاله، تشخیص خرابی دریچه در اثر عیوب مختلف با استفاده از روش انتشار صدا است. در این مقاله، سه عیب لقی، ترک‌خوردگی و لب‌پریدگی دریچه در موتور احتراق داخلی بررسی می‌شود. این عیوب در دریچه‌های مختلف دود و هوا در استوانه‌های مختلف بررسی خواهند شد. آزمون‌ها روی بستار موتوری چهار استوانه انجام می‌شوند. روش آزمایش‌ها به طور خلاصه بدین شرح است که کف بستار بسته می‌شود و هوای فشرده از راه شمع ...

متن کامل

تشخیص بیماری دیابت با استفاده از شبکه عصبی مصنوعی و عصبی- فازی

Background & Aim: A main problem in diabetes is its timely and accurate diagnosis. This study aimed at diagnosing diabetes using data mining methods. Methods: The present study is an analytical investigation including 768 individuals with 8 attributes. Artificial neural networks and fuzzy neural networks were used to diagnose the diabetes. To achieve a real accuracy, the Kfold method was used ...

متن کامل

تخمین هدایت هیدرولیکی اشباع در برخی از خاکهای استان ایلام با استفاده از شبکههای عصبی مصنوعی و روشهای رگرسیونی

هدایت هیدرولیکی اشباع ) Ks ( یکی از ورودیهای مهم در مدلسازی جریان آب و انتقال آلایندهها در خاک، طراحی سیستمهای آبیاری و زهکشی، مدلسازی آبهایزیرزمینی و فرایندهای زیستمحیطی است. اندازهگیری مستقیم Ks در مزرعه و آزمایشگاه میسّر میباشد؛ لیکن، معمولاً زمانبر، پرهزینه و دشوار بوده و در سطوحبزرگ نیز غیرعملی است. افزون بر این، بهدلیل غیرهمگن بودن خاک و خطاهای آزمایشگاهی، تا حدودی این اندازهگیریها غیرقابل ...

متن کامل

ترکیب روش‌های عصبی، فازی و عصبی- فازی با استفاده از الگوریتم مورچگان پیوسته برای تشخیص رخساره‌های مخزن

تشخیص رخساره‌های مخزنی و تعیین نواحی با کیفیت مخزنی بالا نقش مهمی در مدل‌سازی مخزن و همچنین حفاری‌های آتی در میدان‌های در حال توسعه ایفا می‌کند. شاخص جریانی یکی از شاخص‌هایی است که با توجه به تغییر خصوصیات مخزن تغییر کرده و می‌تواند نقش موثری در تقسیم‌بندی رخساره‌های مخزنی داشته باشد. مطالعه حاضر یک مدل بهینه‌یافته و پیشرفته را به‌وسیله ترکیب سیستم‌های هوشمند برای تخمین شاخص جریانی در کل میدان ...

متن کامل

منابع من

با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ذخیره در منابع من قبلا به منابع من ذحیره شده

{@ msg_add @}


عنوان ژورنال

دوره 45  شماره 2

صفحات  105- 118

تاریخ انتشار 2013-12-22

با دنبال کردن یک ژورنال هنگامی که شماره جدید این ژورنال منتشر می شود به شما از طریق ایمیل اطلاع داده می شود.

میزبانی شده توسط پلتفرم ابری doprax.com

copyright © 2015-2023